KLS Conjecture (Kannan–Lovász–Simonovits)
Posed by Ravi Kannan, László Lovász, Miklós Simonovits (1995)
§ Problem Statement
§ Discussion
§ Significance & Implications
§ Known Partial Results
§ References
Isoperimetric problems for convex bodies and a localization lemma
Ravi Kannan, László Lovász, Miklós Simonovits (1995)
Discrete & Computational Geometry
📍 Section 5, unnumbered “Conjecture” immediately preceding Theorem 5.4, p. 557 (Discrete & Computational Geometry 13 (1995), 541–559).
Bourgain's slicing problem and KLS isoperimetry up to polylog
Bo'az Klartag, Joseph Lehec (2022)
Thin shell implies spectral gap up to polylog via a stochastic localization scheme
Ronen Eldan (2013)
Geometric and Functional Analysis (GAFA)
📍 Section 1 (Introduction), Theorem 1.1 (thin-shell width controls Poincaré constant up to polylog), p. 533.
Eldan's stochastic localization and the KLS hyperplane conjecture: An improved lower bound for expansion
Yin Tat Lee, Santosh S. Vempala (2017)
FOCS 2017
📍 Section 1 (Introduction), Theorem 1.1 (Cheeger constant C_n = O(n^{1/4}), first sub-polynomial bound), p. 2.